infinitesimal strain

infinitesimal strain
бесконечно малая деформация

English-Russian dictionary of chemistre. 2014.

Игры ⚽ Поможем решить контрольную работу

Смотреть что такое "infinitesimal strain" в других словарях:

  • Infinitesimal strain theory — The infinitesimal strain theory, sometimes called small deformation theory, small displacement theory, or small displacement gradient theory, deals with infinitesimal deformations of a continuum body. For an infinitesimal deformation the… …   Wikipedia

  • Infinitesimal calculus — Gottfried Wilhelm Leibniz (left) and Isaac Newton (right) …   Wikipedia

  • Finite strain theory — Continuum mechanics …   Wikipedia

  • Differential (infinitesimal) — For other uses of differential in calculus, see differential (calculus), and for more general meanings, see differential. In calculus, a differential is traditionally an infinitesimally small change in a variable. For example, if x is a variable …   Wikipedia

  • Shear strain — is a strain that acts parallel to the face of a material that it is acting on. Normal strain acts perpendicular to the face of that it is acting on. There are two ways to interpret shear strain: the average shear strain and the engineering shear… …   Wikipedia

  • solids, mechanics of — ▪ physics Introduction       science concerned with the stressing (stress), deformation (deformation and flow), and failure of solid materials and structures.       What, then, is a solid? Any material, fluid or solid, can support normal forces.… …   Universalium

  • Compatibility (mechanics) — Continuum mechanics …   Wikipedia

  • Deformation (mechanics) — This article is about deformation in mechanics. For the term s use in engineering, see Deformation (engineering). Deformation in continuum mechanics is the transformation of a body from a reference configuration to a current configuration.[1] A… …   Wikipedia

  • Linear elasticity — Continuum mechanics …   Wikipedia

  • Stress (mechanics) — Continuum mechanics …   Wikipedia

  • Hooke's law — models the properties of springs for small changes in length Prof. Walter Lewin explains Hooke s law, in …   Wikipedia


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»